The Detection of Fake-Bad and Fake-Good Responding on the Millon Clinical Multiaxial Inventory III

Scott D. Daubert and April E. Metzler
Lehigh University

The purpose of this study was to examine the effectiveness of the 3 Modifying Indices of the Millon Clinical Multiaxial Inventory III (MCMI-III) in the detection of fake-bad and fake-good responding. The sample consisted of 160 psychiatric outpatients. Paired t-tests were performed to examine the effects of instructional set (faking vs. standard instructions). As hypothesized, instructional set produced significant differences on Scale X, Scale Y, and Scale Z in both fake-bad and fake-good analyses. Single-scale cutoff scores were as effective as multiple-scale cutoffs. The overall rates of successful classification indicated moderate effectiveness and utility of the MCMI-III Modifying Indices in the detection of dissimulated responding. When base rates were varied to more closely approximate a general clinical population, overall classification accuracy increased, but identification of faking (positive predictive power) gradually eroded with declining base-rate estimates. At lower base rates of faking, MCMI-III standard cutoff points yielded a high number of false positives.

Concern for response distortion or dissimulation on personality inventories has been recognized as an important test validity issue and continues to be an ongoing research endeavor (Bagby, Gillis, & Dickens, 1990; Bagby, Gillis, Toner, & Goldberg, 1991; Graham, Watts, & Timbrook, 1991; Nichols & Greene, 1997). Content-responsive dissimulation occurs when a person considers the content of the items, but not in an honest manner (Nichols, Greene, & Schmolck, 1989). Accurate detection of such faking-good and faking-bad response sets on the Millon Clinical Multiaxial Inventory III (MCMI-III; Millon, 1993) was the primary purpose of this study.

Validity scales have been the fundamental safeguard in objective personality measures for the detection of dissimulated response sets. On the MCMI-III, there are four validity scales called Modifying Indices. The first is Scale V (Validity Index), consisting of three improbable, low-endorsement items, whose main purpose is to detect random responding. The remaining three Modifying Indices were developed to identify content-responsive dissimulation and include Scale X (Disclosure Index), Scale Y (Desirability Index), and Scale Z (Debasement Index). A disclosure adjustment is made to clinical scores on the basis of the level of Scale X. Scale Y is composed of items intended to identify potential fake-good responding. Scale Z is composed of items intended to identify potential fake-bad responding.

The same inherent characteristics that account for the popularity of the MCMI-III may make it more prone to dissimulation problems. First, like the Millon Clinical Multiaxial Inventory—II (MCMI-II; Millon, 1987), the MCMI-III contains only 175 items and has significant scale overlap. The inventory was intentionally kept brief to minimize fatigue and to be cost- and time-efficient. Thus, limited attention was given to added items or scales purely for validity considerations. Second, there is a strong degree of concordance between MCMI-III items and specific diagnostic criteria. Fully 84% (105) of the 125 relevant diagnostic criteria statements in the Diagnostic and Statistical Manual of Mental Disorders (4th ed., rev., DSM-IV; American Psychiatric Association, 1994) have a directly corresponding item on the MCMI-III. The MCMI-III was intentionally developed to include theoretically consistent “obvious” items and exclude “subtle” items. Third, the MCMI-III was developed for routine use with adult clinical populations in a variety of settings to screen for psychopathology and aid in differential diagnosis. Millon (1994) also deemed the test appropriate for use with forensic populations, including child custody evaluations, competency evaluations, and personal injury evaluations, because such populations were represented in the normative sample. However, the Millon inventories have not been well researched regarding dissimulation and special populations.

In their review of the Millon Clinical Multiaxial Inventory (MCMI; Millon, 1977) and MCMI-II, Craig and Weinberg (1993) found a surprising lack of research on any of the Modifying Indices. There is only one published dissimulation study of the original MCMI (Van Gorp & Meyer, 1986). In this study, the Weight factor (now Scale X) correctly identified and adjusted scores for fake-bad profiles well, but most of the fake-good profiles went undetected. Three studies of the MCMI-II used discriminant analyses to study fake-bad and fake-good responding, but these were all limited by the use of at least partial student samples (Bagby et al., 1990, 1991; Retzlaff, Sheehan, & Fiel, 1991). Clinical rather than college student samples are preferred for instruments designed to assess psychopathology (Butcher, Gra-